8,953 research outputs found

    Research on new techniques for the analysis of manual control systems Progress report, 16 Jun. - 15 Dec. 1968

    Get PDF
    Parameter estimation for continuous input-output systems with internal sampling in human controller model

    Global Dynamics in Galactic Triaxial Systems I

    Get PDF
    In this paper we present a theoretical analysis of the global dynamics in a triaxial galactic system using a 3D integrable Hamiltonian as a simple representation. We include a thorough discussion on the effect of adding a generic non--integrable perturbation to the global dynamics of the system. We adopt the triaxial Stackel Hamiltonian as the integrable model and compute its resonance structure in order to understand its global dynamics when a perturbation is introduced. Also do we take profit of this example in order to provide a theoretical discussion about diffussive processes taking place in phase space.Comment: Accepted A&

    Long-Term Evolution of Massive Black Hole Binaries. III. Binary Evolution in Collisional Nuclei

    Get PDF
    [Abridged] In galactic nuclei with sufficiently short relaxation times, binary supermassive black holes can evolve beyond their stalling radii via continued interaction with stars. We study this "collisional" evolutionary regime using both fully self-consistent N-body integrations and approximate Fokker-Planck models. The N-body integrations employ particle numbers up to 0.26M and a direct-summation potential solver; close interactions involving the binary are treated using a new implementation of the Mikkola-Aarseth chain regularization algorithm. Even at these large values of N, two-body scattering occurs at high enough rates in the simulations that they can not be simply scaled to the large-N regime of real galaxies. The Fokker-Planck model is used to bridge this gap; it includes, for the first time, binary-induced changes in the stellar density and potential. The Fokker-Planck model is shown to accurately reproduce the results of the N-body integrations, and is then extended to the much larger N regime of real galaxies. Analytic expressions are derived that accurately reproduce the time dependence of the binary semi-major axis as predicted by the Fokker-Planck model. Gravitational wave coalescence is shown to occur in <10 Gyr in nuclei with velocity dispersions below about 80 km/s. Formation of a core results from a competition between ejection of stars by the binary and re-supply of depleted orbits via two-body scattering. Mass deficits as large as ~4 times the binary mass are produced before coalescence. After the two black holes coalesce, a Bahcall-Wolf cusp appears around the single hole in one relaxation time, resulting in a nuclear density profile consisting of a flat core with an inner, compact cluster, similar to what is observed at the centers of low-luminosity spheroids.Comment: 21 page

    ATRAN3S: An unsteady transonic code for clean wings

    Get PDF
    The development and applications of the unsteady transonic code ATRAN3S for clean wings are discussed. Explanations of the unsteady, transonic small-disturbance aerodynamic equations that are used and their solution procedures are discussed. A detailed user's guide, along with input and output for a sample case, is given

    Research on new techniques for the analysis of manual control systems Progress report, 15 Dec. 1968 - 15 Jun. 1969

    Get PDF
    Decision processes of human manual controllers, neuromuscular system, and stochastic processe

    An Asynchronous Pulse-amplitude Pulse-width Model of the Human Operator

    Get PDF
    Asynchronous pulse-amplitude pulse width model of human operator performanc

    Triaxial Black-Hole Nuclei

    Get PDF
    We demonstrate that the nuclei of galaxies containing supermassive black holes can be triaxial in shape. Schwarzschild's method was first used to construct self-consistent orbital superpositions representing nuclei with axis ratios of 1:0.79:0.5 and containing a central point mass representing a black hole. Two different density laws were considered, with power-law slopes of -1 and -2. We constructed two solutions for each power law: one containing only regular orbits and the other containing both regular and chaotic orbits. Monte-Carlo realizations of the models were then advanced in time using an N-body code to verify their stability. All four models were found to retain their triaxial shapes for many crossing times. The possibility that galactic nuclei may be triaxial complicates the interpretation of stellar-kinematical data from the centers of galaxies and may alter the inferred interaction rates between stars and supermassive black holes.Comment: 4 pages, 4 postscript figures, uses emulateapj.st

    Long Term Evolution of Massive Black Hole Binaries

    Full text link
    The long-term evolution of massive black hole binaries at the centers of galaxies is studied in a variety of physical regimes, with the aim of resolving the ``final parsec problem,'' i.e., how black hole binaries manage to shrink to separations at which emission of gravity waves becomes efficient. A binary ejects stars by the gravitational slingshot and carves out a loss cone in the host galaxy. Continued decay of the binary requires a refilling of the loss cone. We show that the standard treatment of loss cone refilling, derived for collisionally relaxed systems like globular clusters, can substantially underestimate the refilling rates in galactic nuclei. We derive expressions for non-equilibrium loss-cone dynamics and calculate time scales for the decay of massive black hole binaries following galaxy mergers, obtaining significantly higher decay rates than heretofore. Even in the absence of two-body relaxation, decay of binaries can persist due to repeated ejection of stars returning to the nucleus on eccentric orbits. We show that this recycling of stars leads to a gradual, approximately logarithmic dependence of the binary binding energy on time. We derive an expression for the loss cone refilling induced by the Brownian motion of a black hole binary. We also show that numerical N-body experiments are not well suited to probe these mechanisms over long times due to spurious relaxation.Comment: Replaced to match the accepted version, ApJ, 596 (2003

    Free Radicals in Superfluid Liquid Helium Nanodroplets: A Pyrolysis Source for the Production of Propargyl Radical

    Full text link
    An effusive pyrolysis source is described for generating a continuous beam of radicals under conditions appropriate for the helium droplet pick-up method. Rotationally resolved spectra are reported for the ν1\nu_1 vibrational mode of the propargyl radical in helium droplets at 3322.15 cm1^{-1}. Stark spectra are also recorded that allow for the first experimental determination of the permanent electric dipole moment of propargyl, namely -0.150 D and -0.148 D for ground and excited state, respectively, in good agreement with previously reported ab initio results of -0.14 D [1]. The infrared spectrum of the ν1\nu_1 mode of propargyl-bromide is also reported. The future application of these methods for the production of novel radical clusters is discussed
    corecore